Get started =========== Installation ------------ Go to the `PyPI site `_ to download and install the package. Or use the command : :: pip install kuplift Quick start ----------- Code example : :: import kuplift as kp import pandas as pd df = pd.read_csv("data.csv") # Make sure the dtype of all categorical variables is object df = df.astype({"some_categorical_variable": object}) variables = list(df.columns[:-2]) # Last two columns are treatment and target columns # Univariate variable transformation ue = kp.UnivariateEncoding() encoded_data = ue.fit_transform(df[variables], df["treatment"], df["target"]) # Univariate variable transformation optimized through the use of the C++ implementation of umodl ue = kp.OptimizedUnivariateEncoding() encoded_data = ue.fit_transform(df[variables], df["treatment"], df["target"]) # Feature selection fs = kp.FeatureSelection() important_vars = fs.filter(df[variables], df["treatment"], df["target"]) # Uplift Bayesian Decision Tree tree = kp.BayesianDecisionTree() tree.fit(df[variables], df["treatment"], df["target"]) preds = tree.predict(df[variables]) # Uplift Bayesian Random Forest forest = kp.BayesianRandomForest(n_trees=4) forest.fit(df[variables], df["treatment"], df["target"]) preds = forest.predict(df[variables]) License ------- See the ``LICENSE.md`` file of this repository or in the -info directory of the python package installation (you can find it with ``pip show -f kuplift``) Credits ------- kuplift has been developed at `Orange Labs `_. **Current contributors:** Mina Rafla Nicolas Voisine